73.3.1.1 通氮干燥法
方法提要
称取一定量的空气干燥煤样,置于 105~110℃干燥箱中,在干燥氮气流中干燥至质量恒定。然后根据煤样的质量损失计算出水分的质量分数。
仪器设备
小空间干燥箱 箱体严密,具有较小的自由空间,有气体进、出口,并带有自动控温装置,能保持温度在 105~110℃范围内。
玻璃称量瓶 直径 40mm,高 25mm,并带有严密的磨口盖。
干燥器 内装变色硅胶或粒状无水氯化钙。
干燥塔 容量 250mL,内装干燥剂。
流量计 量程为 100~1000mL/min。
分析天平 感量 0.1mg。
试剂
氮气 纯度 99.9%,含氧量小于 0.01%。
分析步骤
称取 1g (精确至 0.0001g) 粒度小于 0.2mm 的空气干燥煤样,置于预先干燥恒量的称量瓶内,使煤样平摊在称量瓶中。
打开称量瓶盖,放入预先通入干燥氮气并已加热到 105~ 100℃的干燥箱中 (在称量瓶放入干燥箱前 10min 开始通氮气,氮气流量以每小时换气 15 次为准) 。烟煤干燥 1.5h,褐煤和无烟煤干燥 2h。
从干燥箱中取出称量瓶,立即盖上盖,放入干燥器中冷却至室温后称量 (精确至0.0001g) 。再干燥、称量直至恒量。
空气干燥煤样的水分按下式计算:
岩石矿物分析第四分册资源与环境调查分析技术
式中:Mad为空气干燥煤样的水分质量分数,%;m为称取空气干燥煤样的质量,g;m1为煤样干燥后失去的质量,g。
73.3.1.2 空气干燥法
方法提要
称取一定量的空气干燥煤样,置于105~110℃干燥箱内,于空气流中干燥至质量恒定。根据煤样的质量损失计算出水分的质量分数。
仪器设备
鼓风干燥箱带有自动控温装置,能保持温度在105~110℃范围内。
其他与本章73.3.1.1相同。
分析步骤
称取1g(精确至0.0001g)粒度小于0.2mm的空气干燥煤样,置于预先干燥恒量的称量瓶内,使煤样平摊在称量瓶中。
打开称量瓶盖,放入预先鼓风并已加热至105~110℃的干燥箱中(预先鼓风是为了使温度均匀。将装有煤样的称量瓶放入干燥箱前3~5min就开始鼓风)。在一直鼓风的条件下,烟煤干燥1h,无烟煤干燥1~1.5h。
从干燥箱中取出称量瓶,立即盖上盖,放入干燥器中冷却至室温后称量(精确至0.0001g)。再干燥、称量直至恒量。
空气干燥煤样水分w(Mad)含量的计算参见式(73.7)。
注意事项
1)通氮干燥法测定水分,由于在氮气流中加热不存在煤样的氧化问题,所以分析结果也比较准确;仪器设备和测定步骤比空气干燥法测定水分麻烦。
2)空气干燥法测定煤中的水分必须用带鼓风的干燥箱。鼓风的目的在于促使干燥箱内空气流动,一方面使箱内温度均匀,另一方面使煤中水分尽快蒸发,缩短分析周期。试验证明,鼓风情况下干燥1h测得的水分值均高于不鼓风情况下测得水分值,同时再次干燥时也容易达到恒量。
3)空气干燥法测定过程简单,仪器设备不复杂,测定结果可靠,因此在实验室中常用此法。但该法也有缺点,即对于年轻煤容易氧化,测定结果偏低。
73.3.2 灰分的测定
73.3.2.1 缓慢灰化法
方法提要
称取一定量的空气干燥煤样,放入高温炉中,以一定的速度加热至 (815 ± 10) ℃,灰化并灼烧至质量恒定。以残留物的质量占煤样质量的质量分数作为煤样的灰分。
仪器设备
高温炉 炉膛具有足够的恒温区,能保持温度为 (815 ±10) ℃。炉后壁的上部带有直径为 25~ 30mm 的烟囱,下部离炉膛底 20~30mm 处有一个插热电偶的小孔,炉门上有一个直径为 20mm的通气孔。
灰皿 瓷质,长方形,底长 45mm,底宽 22mm,高 14mm (图73.5) 。
图73.5 灰皿(数字单位: mm)
分析步骤
称取1g(精确至0.0001g)粒度小于0.2mm的空气干燥煤样,置于预先灼烧至恒量的灰皿中,使煤样均匀地摊平在灰皿中,使每平方厘米的质量不超过0.15g。
将灰皿送入炉温不超过100℃的高温炉恒温区中,关上炉门并使炉门留有约15mm的缝隙。在不少于30min的时间内将炉温缓慢升至500℃,并在此温度下保持30min;继续升温至(815±10)℃,并在此温度下灼烧1h。
从炉中取出灰皿,放在耐热瓷板或石棉板上,在空气中冷却5min左右,移入干燥器中冷却至室温后称量(精确至0.0001g),再灼烧、称量直至恒量。
空气干燥煤样灰分Aad含量的计算参见式(73.7),m1为灼烧后残留物的质量。
图73.6 快速灰分测定仪
73.3.2.2 快速灰化法
方法 (1)
方法提要
将装有煤样的灰皿放在预先加热至(815 ± 10) ℃ 的灰分快速测定仪的传送带上,煤样自动送入仪器内完全灰化,然后送出。以残留物的质量占煤样质量的质量分数作为煤样的灰分。
仪器设备
快速灰分测定仪 (图73.6) 。
图73.6 是一种比较适宜的快速灰分测定仪,它由马蹄形管式电炉、传送带和控制仪 3 部分组成: ① 马蹄形管式电炉。炉膛长约 700mm,底宽约 75mm,高约 45mm,两端敞口,轴向倾斜度为 5°左右。恒温带要求, (815 ± 10) ℃ 部分长约140mm,750~ 825℃ 部分长约 270mm,出口端温度不高于 100℃ 。② 链式自动传送装置(简称传送带) 。用耐高温金属制成,传送速度可调。在 1000℃ 下不变形,不掉皮。③ 控制仪。主要包括温度控制装置和传送带传送速度控制装置。温度控制装置能将炉温自动控制在 (815 ±10) ℃; 传送带传送速度控制装置能将传送速度控制在 15~50mm/min。
凡能达到以下要求的其他形式的灰分快速测定仪都可使用: ① 高温炉能加热至 (815 ±10) ℃ 并具有足够长的恒温带。② 炉内有足够的空气供煤样燃烧。③ 煤样在炉内有足够长的停留时间,保证灰化完全。④ 能避免或最大限度地减少煤中硫氧化生成的硫氧化物与碳酸钙分解生成的氧化钙接触。
分析步骤
将快速灰分测定仪预先加热至 (815 ±10) ℃。
开动传送带并将其传送速度调节到 17mm/min 左右或其他合适的速度。对于新的灰分快速测定仪,应对不同煤种进行与缓慢灰化法的对比试验,根据对比试验结果及煤的灰化情况,调节传送带的传送速度。
称取 0.5g (精确至 0.0001g) 粒度小于 0.2mm 的空气干燥煤样,置于预先灼烧至恒量的灰皿中,使煤样均匀地摊平在灰皿中,使每平方厘米的质量不超过 0.08g。
将盛有煤样的灰皿放在快速灰分测定仪的传送带上,灰皿即自动送入炉中。
当灰皿从炉内送出时,放在耐热瓷板或石棉板上,在空气中稍冷却,移入干燥器中冷却至室温后称量 (精确至 0.0001g) ,再灼烧、称量直至恒量。
空气干燥煤样灰分 Aad含量的计算参见式 (73.7) ,m1为灼烧后残留物的质量。
方法 (2)
方法提要
将装有煤样的灰皿由炉外逐渐送入预先加热至 (815 ± 10) ℃的高温炉中灰化并灼烧至质量恒定,以残留物的质量占煤样质量的质量分数作为煤样的灰分。
仪器设备
同 73.3.2.1 缓慢灰化法的仪器设备。
分析步骤
称取 1g (精确至 0.0001g) 粒度小于 0.2mm 的空气干燥煤样,置于预先灼烧至恒量的灰皿中,使煤样均匀地摊平在灰皿中,使每平方厘米的质量不超过 0.15g。将盛有煤样的灰皿预先分排放在耐热瓷板或石棉板上。
将高温炉加热到 850℃,打开炉门,将放有灰皿的耐热瓷板或石棉板缓慢地推入高温炉中,先使第一排灰皿中的煤样灰化。待 5~10min 后煤样不再冒烟时,以小于 2cm/min的速度把其余各排灰皿顺序推入炉内炽热部分 (若煤样着火发生爆燃,分析应作废) 。关上炉门,在 (815 ±10) ℃温度下灼烧 40min。
从炉中取出灰皿,放在空气中稍冷却,移入干燥器中冷却至室温后,称量 (精确至0.0001g) ,再灼烧、称量直至恒量。
空气干燥煤样灰分 Aad含量的计算参见式 (73.7) ,m1为灼烧后残留物的质量。
注意事项
1) 煤灰化时主要发生以下反应: ① 黏土和页岩矿物失去结晶水,这类矿物中最普遍的是高岭土,它们在500~600℃失去结晶水。② 碳酸钙受热分解生成二氧化碳和氧化钙,后者在一定程度上与硫氧化物反应生成硫酸钙,在某种程度上还与二氧化碳反应生成碳酸钙。③ 黄铁矿氧化生成三氧化二铁和硫氧化物。④ 与煤中有机物结合的金属元素被氧化成金属氧化物。因此,为了得到比较准确的灰分测定结果,最主要的是选择适当的条件———灰化温度和灰化程序,使煤中碳酸钙和硫化物 (包括有机硫) 完全分解和氧化,以及使这两种反应生成的 CaO 和 SO2之间的反应降低到最低程度。
2) 造成灰分测定误差的主要因素有 3 个: ① 黄铁矿氧化程度。② 碳酸盐 (主要是分解后) 分解程度。③ 灰中固定的硫的多少。
3) 灰化过程中始终保持良好的通风状态,使硫氧化物一经生成就及时排出,因此要求高温炉装有烟囱,在炉门上有通风眼,或将炉门开启一小缝使炉内空气可自然流通。
4) 采用慢速灰化法,使煤中硫化物在碳酸盐分解前就完全氧化并排出,避免硫酸钙生成。
5) 煤样在灰皿中要铺平,以避免局部过厚,一方面避免燃烧不完全; 另一方面可防止底部煤样中硫化物生成的二氧化硫被上部碳酸盐分解生成的氧化钙固定。
6) 在足够高的温度下灼烧足够长的时间,以保证碳酸盐完全分解及二氧化碳完全驱出。