光学法血凝仪是根据血浆凝固过程中浊度的变化来测定凝血功能。根据仪器不同的光学测量原理,又可分为散射比浊法和透射比浊法两类。
散射比浊法是根据待验样品在凝固过程中散射光的变化来确定检测终点的。在该方法中检测通道的单色光源与光探测器呈90°直角,当向样品中加入凝血激活剂后,随样品中纤维蛋白凝块的形成过程,样品的散射光强度逐步增加。当样品完全凝固以后,散射光的强度不再变化,通常是把凝固的起始点作为0%,凝固终点作为100%,把50%作为凝固时间。光探测器接收这一光学的变化,将其转化为电信号,经过放大再被传送到监测器上进行处理,描出凝固曲线。
透射比浊法,是根据待测样品在凝固过程中吸光度变化来确定凝固终点的、与散射比浊法不同的是该方法的光路同一般的比色法一样呈直线安排:来自光源的光线经过处理后变成平行光,透过待测样品后照射到光电管变成电信号,经过放大后监测处理。当向样品中加入凝血激活剂后,开始的吸光度非常弱,随着反应管中纤维蛋白凝块的形成,标本吸光度也逐渐增强,当凝块完全形成后,吸光度趋于恒定。血凝仪可以自动描绘吸光度的变化曲线并设定其中某一点对应的时间为凝固时间。 磁珠法是根据血浆凝固过程中粘度的变化来测量凝血功能的。根据仪器对磁珠运动测量原理的不同,又可分为光电探测法和电磁珠探测法。
光电探测法,在磁珠法中光电探测器的作用与光学法中不同,它只测量血浆凝固过程中磁珠的运动规律,与血浆的浊度无关。在磁珠法中的一对电磁铁安放在测试杯的两端,它们产生恒定的交替磁场使磁珠在测试杯中摆动,在与磁珠摆动的垂直方向安放一对光电接收装置,当磁珠摆幅衰减到50%时确定凝固终点。
光电探测法中还有一种利用红外光反射监测器监测磁珠运动的,下面介绍BE系列半自动血凝仪中将另加介绍。
电磁探测法又可称为双磁路磁珠法,其中一对磁路用于吸引磁珠摆动,另一对磁路利用磁珠摆动过程中对磁力线的切割所产生的电信号,对磁珠摆动幅读度进行监控,当磁珠摆动幅度衰减到50%确定凝固终点。 目前市售的半自动血凝仪主要由样品、试剂预温槽、加样器、检测系统(光学、磁场)及微机组成。有的半自动仪器还配备了发色检测通道,使该类仪器同时具备了检测抗凝及纤维蛋白溶解系统活性的功能。针对光学式半自动血凝仪受人为的因素影响多、重复性较差等缺陷,仪器中应有自动计时装置,以告知预温时间和最佳试剂添加时间在测试位添加了试剂感应器,后者感应从移液器针头滴下的试剂后自动振动,使反应过程中血浆与试剂得以很好地混合此外,该类仪器在测试杯顶部安装了移液器导板,在添加试剂时由导板来固定移液器针头,从而保证了每次均可以在固定的最佳的角度添加试剂并可以防止气泡产生。这一系列改进,提高了光学式半自动血凝仪检测的准确性。
一般半自动血凝仪都可进行凝固法测试,而需要用其它测试方法实现的凝血项目则可用生化分析仪、酶标仪等进行。 该类仪器的基本构成包括:样品传送及处理装置、试剂冷藏位、样品及试剂分配系统、检测系统、电子计算机、输出设备及附件等。
1. 样品传送及处理装置:一般血浆样品由传送装置依此向吸样针位置移动,多数仪器还设置了急诊位置,可以使常规标本检测必要时暂停以服从免疫比浊法将被检物与其相应抗体混合形成复合物,而产生足够大的沉淀颗粒,通过透射比法或散射比浊进行测定。此法操作简便,准确性好,便于自动化。
2. 试剂冷藏位:为避免试剂的变质,仪器往往有试剂冷藏功能,一般同时可以放置几十种试剂进行冷藏。
3. 样品及试剂分配系统:样品臂会自动提起标本盘中的测试杯,将其置于样品预温槽中进行预温。然后试剂臂将试剂注入测试杯中(性能优越的全自动血凝仪为避免凝血酶对其他检测试剂的污染,有独立的凝血酶吸样针),带有旋涡混合器的装置将试剂与样品进行充分混合后将送至测试位,经检测的测试杯被该装置自动丢弃于特设的废物箱中。
4.检测系统:这是涉及仪器测量原理的关键部分。检测血浆的凝固可以通过凝固反应检测法检测,即当纤维蛋白凝块形成时,检测散射光在660nm处浑浊液吸光度的变化或通过凝固点检测法检测,即计算达到预先设定好的吸光度值时的凝固时间而磁珠法则是通过测定在一定磁场强度下小钢珠的摆动幅度变化来测定血浆凝固点。发色底物法及免疫法是检测反应液在405nm、575nm及800nm时的吸光度变化来反映被检测物质的活性。
5. 电子计算机:根据设定的程序计算机指挥血凝仪进行工作并将检测得到的数据进行分析处理,最终得到测试结果。计算机尚可对患者的检验结果进行储存,记忆操作过程中的各种失误,及进行质量有关的工作。
6. 输出设备:通过计算机屏幕或打印机输出测试结果。
7. 附件:主要有系统附件、穿盖系统、条码扫描仪、阳性样品分析扫描仪等。