铅酸蓄电池主要结构有正负极班组,隔板,电解液,联条,正负极柱,外壳组成。
铅酸蓄电池放电过程可分为三个阶段:
1:起始放电阶段(Ⅰ):
起始放电时,蓄电池端电压从14V迅速下降到12.6V,首先消耗极板空隙内的硫酸。当极板消耗到一定程度时,在极板空隙内外浓度差的作用下,空隙内的硫酸才能得到能量的补充(补给量近似等于消耗量)。
因此,在起始放电阶段,蓄电池的放电特性中蓄电池的端电压随极板空隙内硫酸浓度的迅速减小而急剧降低。
2:相对稳定阶段(Ⅱ):
蓄电池端电压从12.6V下降到11.1V的下降过程比较稳定,需要经过相当长的时间,此时极板孔隙内硫酸的补给量与消耗量基本平衡,蓄电池的放电进入相对稳定阶段。
3:迅速下降阶段(Ⅲ):
经过较长时间相对稳定放电放电后。端电压下降较快即从11.1V下降到10.5V。此时电解液中的硫酸以大量消耗,极板孔隙内的硫酸得不到正常的补充,此时若继续放电,蓄电池的端电压则急剧下降,并进入迅速下降阶段,表明蓄电池的放电已邻近终了。
影响铅酸蓄电池容量的因素:
1:放电电流对铅酸蓄电池容量的影响:
蓄电池容量的大小随放电电流的大小而变化。放电电流小,可得到较大的容量放电电流大。可得到较小的容量
2:电解液温度对铅酸蓄电池容量的影响:
电解液温度升高时,离子运动速度增加,获得动能也增加,因此渗透力增加,电解液电阻减小,扩散程度增加,电化学反应增强,这些原因均使铅酸蓄电池的容量增大。
3:电解液相对密度对铅酸蓄电池容量的影响:
电解液相对密度过高或过低对铅酸蓄电池的容量都是不利的。电解液相对密度高时,虽然可以提高铅酸蓄电池的电动势和容量,但电解液的相对密度过大,则电解液的粘度增大,扩散速度减低,内电阻增大,反而导致端电压和容量的减小。